Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3-Methyl-4-[(E)-3-thienylmethylidene-amino]-1H-1,2,4-triazole-5(4H)-thione

Mohammad Asad, ${ }^{\text {a }}$ Chuan-Wei Oo, ${ }^{\text {a }} \ddagger$ Hasnah Osman, ${ }^{\text {a }}$ Chin Sing Yeap ${ }^{\text {b }} \S$ and Hoong-Kun Fun ${ }^{\text {b }} * \boldsymbol{q}$
${ }^{\text {a }}$ School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{\text {b }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
Correspondence e-mail: hkfun@usm.my

Received 5 October 2010; accepted 13 October 2010
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; disorder in main residue; R factor $=0.040 ; w R$ factor $=0.114$; data-to-parameter ratio $=30.4$.

The asymmetric unit of the title compound, $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{~S}_{2}$, contains two crystallographically independent molecules. The thiophene ring of one molecule is disordered over two positions with refined site occupancies of 0.6375 (19) and 0.3625 (19). One molecule is almost planar and the other one is twisted, the dihedral angles between the thiophene and triazole rings being 7.28 (7) and 48.9 (2) ${ }^{\circ}$ [48.5 (4) ${ }^{\circ}$ for the minor component], respectively. An intramolecular C-H. . S hydrogen bond stabilizes the molecular conformation of the planar molecule. In the crystal, the two molecules are interconnected by $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds into dimers, which are further consolidated into chains along the b axis by $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. Weak $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$ interactions [centroid-centroid distance $=3.5149(7) \AA$] are also observed.

Related literature

For general background and the biological activity of Schiff bases of 1,2,4-triazole derivatives, see: Ghazzali et al. (2010); Xia et al. (2010); Aytac et al. (2009); Siddiqui et al. (2006); Kucukguzel et al. (2008). For the stability of the temperature controller used in the data collection, see: Cosier \& Glazer (1986).

Experimental

Crystal data
$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{~S}_{2}$
$M_{r}=224.30$
Triclinic, $P \overline{1}$
$a=9.3108$ (7) \AA
$b=10.2848$ (8) \AA
$c=12.7798(10) \AA$
$\alpha=66.632(2)^{\circ}$
$\beta=83.409(2)^{\circ}$
$\gamma=63.974(2)^{\circ}$
$V=1006.88(13) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.49 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.36 \times 0.25 \times 0.23 \mathrm{~mm}$

Data collection

Bruker APEXII DUO CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2009)
$T_{\text {min }}=0.845, T_{\text {max }}=0.896$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.114 \quad$ independent and constrained
$S=1.06$
8745 reflections
288 parameters
1 restraint

23519 measured reflections
8745 independent reflections 7500 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.025$

Table 1
Hydrogen-bond geometry $\left(\AA \AA^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3 A-\mathrm{H} 3 N A \cdots \mathrm{~S} 2 B^{\mathrm{i}}$	$0.894(19)$	$2.46(2)$	$3.3494(11)$	$177.7(18)$
$\mathrm{N} 3 B-\mathrm{H} 3 N B \cdots \mathrm{~S} 2 A^{\text {ii }}$	$0.84(2)$	$2.45(2)$	$3.2728(12)$	$167.7(19)$
$\mathrm{C} 5 A-\mathrm{H} 5 A A \cdots \mathrm{~S} 2 A$	0.93	2.50	$3.2311(12)$	135
$\mathrm{C} 8 B-\mathrm{H} 8 B A \cdots \mathrm{~N} 4 A^{\text {iii }}$	0.96	2.59	$3.5503(16)$	175
C5B-H5BA $\cdot \mathrm{Cg} 1^{\text {iv }}$	0.93	2.91	$3.4955(12)$	122

Symmetry codes: (i) $x-1, y, z-1$; (ii) $x+1, y, z+1$; (iii) $x+1, y-1, z+1$; (iv)
$-x+1,-y,-z+1$.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

The authors are thankful to Universiti Sains Malaysia (USM) for providing the necessary research facilities and RU research funding under grant No. 1001/PKIMIA/811134. MA also thanks Universiti Sains Malaysia for the award of a post doctoral fellowship and HKF and CSY thank USM for the Research University Grant No. 1001/PFIZIK/811160.

[^0][^1]
organic compounds

References

Aytac, S. P., Tozkoparan, B., Kaynak, F. B., Aktay, G., Goktas, O. \& Unuvar, S. (2009). Eur. J. Med. Chem. 44, 4528-4538.

Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cosier, J. \& Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
Ghazzali, M., Al-Farhan, K., El-Faham, A. \& Reedijk, J. (2010). Polyhedron, 29, 2829-2832.

Kucukguzel, I., Tatar, E., Kucukguzel, S. G., Rolollas, S. \& Clercq, E. D. (2008). Eur. J. Med. Chem. 43, 381-392.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Siddiqui, Z. N., Khuwaja, G. \& Asad, M. (2006). Heterocycl. Commun. 12, 443448.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Xia, Y., Qu, F. \& Peng, L. (2010). Mini-Rev. Med. Chem. 10, 806-821.

supplementary materials

Acta Cryst. (2010). E66, o2861-o2862 [doi:10.1107/S1600536810041152]

3-Methyl-4-[($\boldsymbol{E})$-3-thienylmethylideneamino]-1H-1,2,4-triazole-5(4H)-thione

M. Asad, C.-W. Oo, H. Osman, C. S. Yeap and H.-K. Fun

Comment

Schiff bases of 1,2,4-triazole and its derivatives have been the subject of current research in the field of pharmacology and coordination chemistry (Ghazzali et al., 2010). Due to the bioactivity associated with substituted 1,2,4-triazoles, researchers and chemists are very much interested to study the chemistry of these compounds, as they exhibit a broad spectrum of biological properties such as anticancer (Xia et al., 2010), anti-inflammatory/analgesic (Aytac et al., 2009), antibacterial/ antifungal (Siddiqui et al., 2006), antiviral/anti-HIV and anti-tuberculosis (Kucukguzel et al., 2008) activities.

The asymmetric unit of the title compound consists of two crystallographically independent molecules (Fig. 1). The thiophene ring of molecule B is disordered over two positions with refined site occupancies of 0.6375 (19) and 0.3625 (19). Both molecules exist in an E configuration with respect to the central $\mathrm{C}=\mathrm{N}$ double bond. Molecule A is almost planar and molecule B is twisted, the dihedral angles between the thiophene ring and the triazole ring being $7.28(7)^{\circ}$ and $48.9(2)^{\circ}\left[48.5(4)^{\circ}\right.$ for the minor component] respectively. Intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds stabilize the molecular structures. In the crystal structure, the two molecules are interconnected by N3A-H3NA \cdots S2B and N3B-H3NB \cdots S2A hydrogen bonds (Table 1) into dimers and these dimers are further consolidated into chains along the b axis (Fig. 2) by C8B—H8BANN4A hydrogen bonds (Table 1). Weak $\mathrm{C}-\mathrm{H}^{\cdots} \pi$ and $\pi \cdots \pi$ interactions are also observed $\left[C g 1 \cdots C g 2^{\mathrm{v}}=3.5149\right.$ (7) \AA; (v) $1-x$, $-y$, $-z . C g 1$ and $C g 2$ are centroids of $\mathrm{S} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$ and $\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{N} 3 \mathrm{~A}-\mathrm{N} 4 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}$ ring, respectively].

Experimental

A mixture of 3-methyl-4-amino-5-mercapto-1,2,4-triazole ($4.46 \mathrm{mmol}, 0.58 \mathrm{~g}$) and thiophene-3-carboxaldehyde (4.46 $\mathrm{mmol}, 0.5 \mathrm{~g}$) containing pyridine $(0.1 \mathrm{ml})$ in ethanol was refluxed for about 13 to 14 h . The reaction mixture was cooled to room temperature and the light yellow solid was filtered off, washed with water, dried and recrystallized from chloroformmethanol $(1: 1 \mathrm{v} / \mathrm{v})$ to get the title compound in 65% yield.

Refinement

The thiophene ring of molecule B is disordered over two positions with refined site occupancies of 0.6375 (19) and 0.3625 (19). The same U_{ij} parameters were used for the atom pairs $\mathrm{C} 1 \mathrm{~B} / \mathrm{C} 1 \mathrm{X}$ and $\mathrm{C} 2 \mathrm{~B} / \mathrm{C} 2 \mathrm{X}$. The $\mathrm{S} 1 \mathrm{X}-\mathrm{C} 2 \mathrm{X}$ bond distance was constrained to 1.70 (1) \AA. The N -bound hydrogen atoms was located in a difference Fourier map and refined freely. The rest of hydrogen atoms were positioned geometrically $[\mathrm{C}-\mathrm{H}=0.93-0.96 \AA]$ and refined using a riding model $\left[U_{\text {iso }}(\mathrm{H})\right.$ $\left.=1.2-1.5 U_{\text {eq }}(C)\right]$. A rotating-group model were applied for methyl groups.

supplementary materials

Figures

Fig. 1. The molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms.

Fig. 2. The crystal packing of the title compound viewed down the c axis showing chains along the b axis. Only the major component of disorder is shown. Intermolecular hydrogen bonds are shown as dashed lines.

3-Methyl-4-[(E)-3-thienylmethylideneamino]-1H-1,2,4-triazole- 5(4H)-thione

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{~S}_{2}$
$M_{r}=224.30$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=9.3108$ (7) \AA
$b=10.2848$ (8) \AA
$c=12.7798(10) \AA$
$\alpha=66.632(2)^{\circ}$
$\beta=83.409(2)^{\circ}$
$\gamma=63.974(2)^{\circ}$
$V=1006.88(13) \AA^{3}$

$$
\begin{aligned}
& Z=4 \\
& F(000)=464 \\
& D_{\mathrm{x}}=1.480 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 9994 \text { reflections } \\
& \theta=2.4-35.0^{\circ} \\
& \mu=0.49 \mathrm{~mm}^{-1} \\
& T=100 \mathrm{~K} \\
& \text { Block, colourless } \\
& 0.36 \times 0.25 \times 0.23 \mathrm{~mm}
\end{aligned}
$$

8745 independent reflections

7500 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=35.1^{\circ}, \theta_{\text {min }}=2.4^{\circ}$
$h=-15 \rightarrow 13$
$k=-16 \rightarrow 16$
$l=-17 \rightarrow 20$

Refinement

Refinement on F^{2}	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$	Hydrogen site location: inferred from neighbouring sites

$w R\left(F^{2}\right)=0.114$
$S=1.06$
8745 reflections
288 parameters
1 restraint

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0606 P)^{2}+0.2963 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=1.06 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.50$ e \AA^{-3}

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier \& Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
S1A	$0.76095(4)$	$-0.34744(4)$	$0.39899(2)$	$0.02948(7)$	
S2A	$0.22259(3)$	$-0.11508(3)$	$-0.03400(2)$	$0.02363(6)$	
N1A	$0.35008(11)$	$0.05807(10)$	$0.09471(7)$	$0.02091(15)$	
N2A	$0.24129(11)$	$0.12778(10)$	$0.00194(7)$	$0.01941(14)$	
N3A	$0.07864(12)$	$0.20250(10)$	$-0.13672(8)$	$0.02245(16)$	
N4A	$0.06835(12)$	$0.33875(11)$	$-0.13366(8)$	$0.02392(17)$	
C1A	$0.63594(14)$	$-0.31400(13)$	$0.29387(9)$	$0.02447(19)$	
H1AA	0.6348	-0.3924	0.2755	0.029^{*}	
C2A	$0.68112(15)$	$-0.15163(15)$	$0.37468(10)$	$0.0279(2)$	
H2AA	0.7137	-0.1108	0.4157	0.033^{*}	
C3A	$0.56310(14)$	$-0.06294(13)$	$0.28710(9)$	$0.02428(19)$	
H3AA	0.5065	0.0456	0.2614	0.029^{*}	
C4A	$0.53698(12)$	$-0.15641(12)$	$0.23970(8)$	$0.02067(16)$	
C5A	$0.42312(13)$	$-0.09238(12)$	$0.14318(8)$	$0.02136(17)$	
H5AA	0.4042	-0.1571	0.1179	0.026^{*}	
C6A	$0.18194(12)$	$0.07072(11)$	$-0.05621(8)$	$0.01945(16)$	
C7A	$0.16892(13)$	$0.29067(12)$	$-0.04888(8)$	$0.02199(17)$	
C8A	$0.20936(16)$	$0.39193(13)$	$-0.01317(10)$	$0.0285(2)$	
H8AA	0.1551	0.4992	-0.0654	0.043^{*}	
H8AB	0.3230	0.3597	-0.0134	0.043^{*}	
H8AC	0.1762	0.3825	0.0624	0.043^{*}	
S2B	$0.88542(4)$	$0.23323(3)$	$0.64301(2)$	$0.02461(7)$	
N1B	$0.78425(11)$	$0.05827(10)$	$0.51301(7)$	$0.02158(16)$	

N2B	$0.85328(11)$	$-0.01306(10)$	$0.62466(7)$	$0.01962(15)$	
N3B	$0.97744(12)$	$-0.07490(11)$	$0.77934(8)$	$0.02242(16)$	
N4B	$0.98117(13)$	$-0.21239(11)$	$0.78403(8)$	$0.02472(17)$	
C4B	$0.58641(12)$	$0.28766(11)$	$0.37606(8)$	$0.01978(16)$	$0.6375(19)$
S1B	$0.38121(11)$	$0.51444(11)$	$0.21591(7)$	$0.02699(15)$	$0.6375(19)$
C1B	$0.4516(4)$	$0.4333(3)$	$0.3522(3)$	$0.0172(6)$	$0.6375(19)$
H1BA	0.4077	0.4784	0.4054	0.021^{*}	$0.6375(19)$
C2B	$0.5300(10)$	$0.3569(8)$	$0.1808(6)$	$0.0429(15)$	$0.6375(19)$
H2BA	0.5390	0.3496	0.1099	0.051^{*}	$0.6375(19)$
C3B	$0.6279(10)$	$0.2492(8)$	$0.2775(7)$	$0.0299(7)$	$0.6375(19)$
H3BA	0.7151	0.1577	0.2789	0.036^{*}	$0.3625(19)$
S1X	$0.5125(4)$	$0.3829(3)$	$0.1634(2)$	$0.0288(4)$	$0.3625(19)$
C1X	$0.6323(13)$	$0.2441(10)$	$0.2839(10)$	$0.0172(6)$	$0.3625(19)$
H1XA	0.7179	0.1506	0.2871	0.021^{*}	$0.3625(19)$
C2X	$0.3997(10)$	$0.5014(10)$	$0.2362(7)$	$0.0429(15)$	$0.3625(19)$
H2XA	0.3132	0.5990	0.2040	0.051^{*}	$0.3625(19)$
C3X	$0.4540(11)$	$0.4332(11)$	$0.3424(8)$	$0.048(2)$	$0.3625(19)$
H3XA	0.4062	0.4799	0.3943	0.057^{*}	
C5B	$0.66610(12)$	$0.19528(11)$	$0.49031(8)$	$0.01976(16)$	
H5BA	0.6319	0.2350	0.5472	0.024^{*}	
C6B	$0.90351(12)$	$0.04953(11)$	$0.68276(8)$	$0.01932(16)$	
C7B	$0.90578(13)$	$-0.17204(11)$	$0.68809(8)$	$0.02196(17)$	$0.0302(2)$
C8B	$0.87796(17)$	$-0.27885(13)$	$0.65086(10)$	0.045^{*}	
H8BA	0.9231	-0.3832	0.7087	0.045^{*}	0.045^{*}
H8BB	0.9279	-0.2790	0.5809	$0.035(5)^{*}$	$0.037(5)^{*}$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1A	$0.02947(14)$	$0.02718(13)$	$0.02285(12)$	$-0.01128(11)$	$-0.00947(10)$	$0.00081(10)$
S2A	$0.02878(13)$	$0.01789(11)$	$0.02143(11)$	$-0.00851(9)$	$-0.00820(9)$	$-0.00404(8)$
N1A	$0.0232(4)$	$0.0199(3)$	$0.0164(3)$	$-0.0082(3)$	$-0.0052(3)$	$-0.0033(3)$
N2A	$0.0224(4)$	$0.0171(3)$	$0.0158(3)$	$-0.0077(3)$	$-0.0046(3)$	$-0.0028(3)$
N3A	$0.0257(4)$	$0.0188(3)$	$0.0196(3)$	$-0.0092(3)$	$-0.0074(3)$	$-0.0025(3)$
N4A	$0.0279(4)$	$0.0187(4)$	$0.0213(4)$	$-0.0091(3)$	$-0.0065(3)$	$-0.0029(3)$
C1A	$0.0253(5)$	$0.0209(4)$	$0.0227(4)$	$-0.0103(4)$	$-0.0057(3)$	$-0.0018(3)$
C2A	$0.0320(5)$	$0.0301(5)$	$0.0219(4)$	$-0.0149(4)$	$-0.0066(4)$	$-0.0064(4)$
C3A	$0.0295(5)$	$0.0233(4)$	$0.0187(4)$	$-0.0119(4)$	$-0.0053(3)$	$-0.0044(3)$
C4A	$0.0223(4)$	$0.0200(4)$	$0.0166(3)$	$-0.0098(3)$	$-0.0041(3)$	$-0.0019(3)$
C5A	$0.0230(4)$	$0.0197(4)$	$0.0187(4)$	$-0.0088(3)$	$-0.0051(3)$	$-0.0035(3)$
C6A	$0.0209(4)$	$0.0187(4)$	$0.0160(3)$	$-0.0081(3)$	$-0.0034(3)$	$-0.0034(3)$
C7A	$0.0260(4)$	$0.0172(4)$	$0.0190(4)$	$-0.0084(3)$	$-0.0043(3)$	$-0.0028(3)$
C8A	$0.0369(6)$	$0.0209(4)$	$0.0266(5)$	$-0.0126(4)$	$-0.0080(4)$	$-0.0052(4)$
S2B	$0.03028(13)$	$0.01731(11)$	$0.02452(12)$	$-0.00988(9)$	$-0.00816(9)$	$-0.00420(9)$
N1B	$0.0251(4)$	$0.0173(3)$	$0.0176(3)$	$-0.0066(3)$	$-0.0066(3)$	$-0.0029(3)$

sup-4

N2B	$0.0229(4)$	$0.0144(3)$	$0.0173(3)$	$-0.0064(3)$	$-0.0061(3)$	$-0.0019(3)$
N3B	$0.0275(4)$	$0.0197(4)$	$0.0183(3)$	$-0.0108(3)$	$-0.0063(3)$	$-0.0028(3)$
N4B	$0.0316(5)$	$0.0182(3)$	$0.0205(4)$	$-0.0107(3)$	$-0.0081(3)$	$-0.0011(3)$
C4B	$0.0219(4)$	$0.0163(4)$	$0.0181(4)$	$-0.0083(3)$	$-0.0035(3)$	$-0.0024(3)$
S1B	$0.0283(3)$	$0.0208(2)$	$0.0227(2)$	$-0.00926(19)$	$-0.00948(18)$	$0.00179(17)$
C1B	$0.0168(9)$	$0.0083(7)$	$0.0140(7)$	$0.0010(6)$	$-0.0091(7)$	$0.0030(6)$
C2B	$0.0343(17)$	$0.0261(19)$	$0.063(4)$	$-0.0096(14)$	$-0.002(2)$	$-0.014(2)$
C3B	$0.0346(15)$	$0.0358(15)$	$0.0226(16)$	$-0.0165(12)$	$0.0019(11)$	$-0.0131(12)$
S1X	$0.0313(8)$	$0.0265(9)$	$0.0240(5)$	$-0.0102(7)$	$-0.0031(5)$	$-0.0066(5)$
C1X	$0.0168(9)$	$0.0083(7)$	$0.0140(7)$	$0.0010(6)$	$-0.0091(7)$	$0.0030(6)$
C2X	$0.0343(17)$	$0.0261(19)$	$0.063(4)$	$-0.0096(14)$	$-0.002(2)$	$-0.014(2)$
C3X	$0.053(4)$	$0.056(4)$	$0.069(5)$	$-0.041(3)$	$0.029(3)$	$-0.044(4)$
C5B	$0.0215(4)$	$0.0172(4)$	$0.0180(4)$	$-0.0080(3)$	$-0.0034(3)$	$-0.0034(3)$
C6B	$0.0202(4)$	$0.0172(4)$	$0.0184(4)$	$-0.0075(3)$	$-0.0034(3)$	$-0.0041(3)$
C7B	$0.0268(4)$	$0.0152(4)$	$0.0190(4)$	$-0.0080(3)$	$-0.0067(3)$	$-0.0010(3)$
C8B	$0.0433(6)$	$0.0178(4)$	$0.0266(5)$	$-0.0125(4)$	$-0.0124(4)$	$-0.0027(4)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

S1A-C1A	1.7085 (11)
S1A-C2A	1.7170 (13)
S2A-C6A	1.6838 (10)
N1A-C5A	1.2859 (13)
N1A-N2A	1.3820 (11)
N2A-C6A	1.3881 (12)
N2A-C7A	1.3889 (13)
N3A-C6A	1.3408 (13)
N3A-N4A	1.3781 (13)
N3A-H3NA	0.896 (19)
N4A-C7A	1.3026 (13)
C1A-C4A	1.3787 (15)
C1A-H1AA	0.9300
C2A-C3A	1.3730 (15)
C2A-H2AA	0.9300
C3A-C4A	1.4322 (15)
С3A-H3AA	0.9300
C4A-C5A	1.4568 (13)
C5A-H5AA	0.9300
C7A-C8A	1.4816 (15)
C8A-H8AA	0.9600
C8A-H8AB	0.9600
C8A-H8AC	0.9600
S2B-C6B	1.6837 (10)
N1B-C5B	1.2917 (13)
N1B-N2B	1.3977 (11)
N2B-C6B	1.3811 (12)
C1A-S1A-C2A	92.44 (5)
C5A-N1A-N2A	120.12 (9)
N1A-N2A-C6A	134.03 (8)

N2B-C7B	1.3812 (12)
N3B-C6B	1.3430 (12)
N3B-N4B	1.3765 (13)
N3B-H3NB	0.84 (2)
N4B-C7B	1.3063 (13)
C4B-C1X	1.381 (13)
C4B-C3X	1.392 (10)
C4B-C1B	1.410 (3)
C4B-C3B	1.429 (8)
C4B-C5B	1.4542 (13)
S1B-C1B	1.670 (3)
S1B-C2B	1.791 (9)
C1B-H1BA	0.9300
C2B-C3B	1.367 (9)
C2B-H2BA	0.9300
C3B-H3BA	0.9300
S1X-C1X	1.705 (9)
S1X-C2X	1.734 (8)
C1X-H1XA	0.9300
C2X-C3X	1.297 (13)
C2X-H2XA	0.9300
C3X—H3XA	0.9300
C5B-H5BA	0.9300
C7B-C8B	1.4809 (15)
C8B-H8BA	0.9600
C8B-H8BB	0.9600
C8B-H8BC	0.9600
$\mathrm{C} 1 \mathrm{X}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{X}$	109.6 (5)
$\mathrm{C} 1 \mathrm{X}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	114.6 (3)
C3X-C4B-C3B	107.0 (5)

N1A-N2A-C7A	117.69 (8)
C6A-N2A-C7A	108.28 (8)
C6A-N3A-N4A	114.25 (8)
C6A-N3A-H3NA	127.0 (12)
N4A-N3A-H3NA	118.5 (12)
C7A-N4A-N3A	104.29 (8)
C4A-C1A-S1A	111.67 (8)
C4A-C1A-H1AA	124.2
S1A-C1A-H1AA	124.2
C3A-C2A-S1A	111.42 (8)
C3A-C2A-H2AA	124.3
S1A-C2A-H2AA	124.3
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	112.42 (10)
C2A-C3A-H3AA	123.8
C4A-C3A-H3AA	123.8
C1A-C4A-C3A	112.04 (9)
C1A-C4A-C5A	123.85 (10)
C3A-C4A-C5A	124.08 (9)
N1A-C5A-C4A	116.66 (9)
N1A-C5A-H5AA	121.7
C4A-C5A-H5AA	121.7
N3A-C6A-N2A	102.63 (8)
N3A-C6A-S2A	126.98 (8)
N2A-C6A-S2A	130.38 (7)
N4A - C7A-N2A	110.54 (9)
N4A-C7A-C8A	125.91 (9)
N2A-C7A-C8A	123.48 (9)
C7A-C8A-H8AA	109.5
C7A-C8A-H8AB	109.5
H8AA-C8A-H8AB	109.5
C7A-C8A-H8AC	109.5
H8AA-C8A-H8AC	109.5
H8AB-C8A-H8AC	109.5
C5B-N1B-N2B	113.61 (9)
C6B-N2B-C7B	108.61 (8)
C6B-N2B-N1B	128.38 (8)
C7B-N2B-N1B	122.26 (8)
C6B-N3B-N4B	113.86 (8)
C6B-N3B-H3NB	126.2 (13)
N4B-N3B-H3NB	119.7 (13)
C7B-N4B-N3B	104.32 (8)
C5A-N1A-N2A-C6A	2.18 (18)
C5A-N1A-N2A-C7A	-178.40 (10)
C6A-N3A-N4A-C7A	0.28 (13)
C2A-S1A-C1A-C4A	1.06 (10)
C1A-S1A-C2A-C3A	-0.79 (10)
S1A-C2A-C3A-C4A	0.34 (14)
S1A-C1A-C4A-C3A	-1.04 (13)
S1A-C1A-C4A-C5A	177.06 (9)

C1B-C4B-C3B	112.0 (3)
C1X-C4B-C5B	124.8 (3)
C3X-C4B-C5B	125.6 (4)
C1B-C4B-C5B	120.56 (16)
C3B-C4B-C5B	127.5 (3)
C1B-S1B-C2B	94.2 (3)
C4B-C1B-S1B	111.2 (2)
C4B-C1B-H1BA	124.4
S1B-C1B-H1BA	124.4
C3B-C2B-S1B	107.5 (6)
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{BA}$	126.3
$\mathrm{S} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{BA}$	126.3
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	115.1 (6)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{BA}$	122.4
C4B-C3B-H3BA	122.4
C1X-S1X-C2X	91.4 (5)
C4B-C1X-S1X	111.6 (5)
C4B-C1X-H1XA	124.2
S1X-C1X-H1XA	124.2
C3X-C2X-S1X	109.7 (7)
C3X-C2X-H2XA	125.1
S1X-C2X-H2XA	125.1
C2X-C3X-C4B	117.6 (8)
C2X-C3X-H3XA	121.2
C4B-C3X-H3XA	121.2
N1B-C5B-C4B	120.21 (9)
N1B-C5B-H5BA	119.9
C4B-C5B-H5BA	119.9
N3B-C6B-N2B	102.76 (8)
N3B-C6B-S2B	127.50 (8)
N2B-C6B-S2B	129.69 (7)
N4B-C7B-N2B	110.39 (9)
N4B-C7B-C8B	125.79 (9)
N2B-C7B-C8B	123.82 (9)
C7B-C8B-H8BA	109.5
C7B-C8B-H8BB	109.5
H8BA-C8B-H8BB	109.5
C7B-C8B-H8BC	109.5
H8BA-C8B-H8BC	109.5
H8BB-C8B-H8BC	109.5
S1B-C2B-C3B-C4B	0.9 (10)
$\mathrm{C} 1 \mathrm{X}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	178 (100)
$\mathrm{C} 3 \mathrm{X}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	-1.7 (9)
$\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	-1.1 (9)
C5B-C4B-C3B-C2B	178.9 (5)
$\mathrm{C} 3 \mathrm{X}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 1 \mathrm{X}-\mathrm{S} 1 \mathrm{X}$	0.3 (10)
C1B-C4B-C1X-S1X	1.0 (10)
C3B-C4B-C1X-S1X	0 (19)

$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	$0.45(15)$
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	$-177.65(11)$
$\mathrm{N} 2 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$179.43(9)$
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}$	$-173.55(11)$
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}$	$4.33(16)$
$\mathrm{N} 4 \mathrm{~A}-\mathrm{N} 3 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}$	$-0.02(12)$
$\mathrm{N} 4 \mathrm{~A}-\mathrm{N} 3 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{S} 2 \mathrm{~A}$	$179.17(8)$
$\mathrm{N} 1 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{N} 3 \mathrm{~A}$	$179.21(11)$
$\mathrm{C} 7 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{N} 3 \mathrm{~A}$	$-0.24(11)$
$\mathrm{N} 1 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{S} 2 \mathrm{~A}$	$0.07(18)$
$\mathrm{C} 7 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{S} 2 \mathrm{~A}$	$-179.39(9)$
$\mathrm{N} 3 \mathrm{~A}-\mathrm{N} 4 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}$	$-0.43(12)$
$\mathrm{N} 3 \mathrm{~A}-\mathrm{N} 4 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}$	$176.66(11)$
$\mathrm{N} 1 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{N} 4 \mathrm{~A}$	$-179.11(9)$
$\mathrm{C} 6 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{N} 4 \mathrm{~A}$	$0.44(13)$
$\mathrm{N} 1 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}$	$3.72(16)$
$\mathrm{C} 6 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}$	$-176.73(11)$
$\mathrm{C} 5 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}$	$-49.59(15)$
$\mathrm{C} 5 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}$	$141.48(10)$
$\mathrm{C} 6 \mathrm{~B}-\mathrm{N} 3 \mathrm{~B}-\mathrm{N} 4 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}$	$-0.69(13)$
$\mathrm{C} 1 \mathrm{X}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{S} 1 \mathrm{~B}$	$0.7(6)$
$\mathrm{C} 3 \mathrm{X}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{S} 1 \mathrm{~B}$	$7(5)$
C3B-C4B-C1B-S1B	$0.7(5)$
C5B-C4B-C1B-S1B	$-179.23(13)$
C2B-S1B-C1B-C4B	$-0.2(4)$
C1B-S1B-C2B-C3B	$-0.4(7)$

$\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 1 \mathrm{X}-\mathrm{S} 1 \mathrm{X}$	$-179.1(3)$
$\mathrm{C} 2 \mathrm{X}-\mathrm{S} 1 \mathrm{X}-\mathrm{C} 1 \mathrm{X}-\mathrm{C} 4 \mathrm{~B}$	$0.1(9)$
$\mathrm{C} 1 \mathrm{X}-\mathrm{S} 1 \mathrm{X}-\mathrm{C} 2 \mathrm{X}-\mathrm{C} 3 \mathrm{X}$	$-0.6(9)$
$\mathrm{S} 1 \mathrm{X}-\mathrm{C} 2 \mathrm{X}-\mathrm{C} 3 \mathrm{X}-\mathrm{C} 4 \mathrm{~B}$	$1.0(11)$
$\mathrm{C} 1 \mathrm{X}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{X}-\mathrm{C} 2 \mathrm{X}$	$-0.9(11)$
$\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{X}-\mathrm{C} 2 \mathrm{X}$	$-174(6)$
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{X}-\mathrm{C} 2 \mathrm{X}$	$-0.9(10)$
$\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{X}-\mathrm{C} 2 \mathrm{X}$	$178.6(6)$
$\mathrm{N} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	$177.18(9)$
$\mathrm{C} 1 \mathrm{X}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}$	$-3.5(7)$
$\mathrm{C} 3 \mathrm{X}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}$	$177.1(5)$
$\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}$	$176.36(19)$
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}$	$-3.6(5)$
$\mathrm{N} 4 \mathrm{~B}-\mathrm{N} 3 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}$	$1.89(12)$
N4B-N3B-C6B-S2B	$-175.95(9)$
C7B-N2B-C6B-N3B	$-2.32(12)$
N1B-N2B-C6B-N3B	$-172.46(10)$
C7B-N2B-C6B-S2B	$175.46(9)$
N1B-N2B-C6B-S2B	$5.31(17)$
N3B-N4B-C7B-N2B	$-0.87(13)$
N3B-N4B-C7B-C8B	$179.50(12)$
C6B-N2B-C7B-N4B	$2.09(13)$
N1B-N2B-C7B-N4B	$172.96(10)$
C6B-N2B-C7B-C8B	$-178.27(11)$
N1B-N2B-C7B-C8B	$-7.40(17)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-H \cdots A$	D-H	H \cdots A	$D^{\cdots} A$	$D-\mathrm{H} \cdots \mathrm{A}$
N3A-H3NA \cdots S2B ${ }^{\text {i }}$	0.894 (19)	2.46 (2)	3.3494 (11)	177.7 (18)
N3B-H3NB \cdots S2A ${ }^{\text {ii }}$	0.84 (2)	2.45 (2)	3.2728 (12)	167.7 (19)
C5A-H5AA \cdots S2A	0.93	2.50	3.2311 (12)	135
C8B-H8BA \cdots N4A ${ }^{\text {iii }}$	0.96	2.59	3.5503 (16)	175
C5B-H5BA \cdots Cg1 ${ }^{\text {iv }}$	0.93	2.91	3.4955 (12)	122

Symmetry codes: (i) $x-1, y, z-1$; (ii) $x+1, y, z+1$; (iii) $x+1, y-1, z+1$; (iv) $-x+1,-y,-z+1$.

supplementary materials

Fig. 1

Fig. 2

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2500).

[^1]: \ddagger Additional correspondence author, e-mail: oocw@usm.my.
 § Thomson Reuters ResearcherID: A-5523-2009.

 - Thomson Reuters ResearcherID: A-3561-2009.

